触发器与存储过程非常相似,触发器也是SQL语句集,两者唯一的区别是触发器不能用EXECUTE语句调用,而是在用户执行Transact-SQL语句时自动触发(激活)执行。触发器是在一个修改了指定表中的数据时执行的存储过程。通常通过创建触发器来强制实现不同表中的逻辑相关数据的引用完整性和一致性。由于用户不能绕过触发器,所以可以用它来强制实施复杂的业务规则,以确保数据的完整性。触发器不同于存储过程,触发器主要是通过事件执行触发而被执行的,而存储过程可以通过存储过程名称名字而直接调用。当对某一表进行诸如UPDATE、INSERT、DELETE这些操作时,SQLSERVER就会自动执行触发器所定义的SQL语句,从而确保对数据的处理必须符合这些SQL语句所定义的规则。
本质上没区别。只是函数有如:只能返回一个变量的限制。而存储过程可以返回多个。而函数是可以嵌入在sql中使用的,可以在select中调用,而存储过程不行。执行的本质都一样。函数限制比较多,比如不能用临时表,只能用表变量.还有一些函数都不可用等等.而存储过程的限制相对就比较少
1)一般来说,存储过程实现的功能要复杂一点,而函数的实现的功能针对性比较强。
2)对于存储过程来说可以返回参数,而函数只能返回值或者表对象。
3)存储过程一般是作为一个独立的部分来执行(EXEC执行),而函数可以作为查询语句的一个部分来调用(SELECT调用),由于函数可以返回一个表对象,因此它可以在查询语句中位于FROM关键字的后面。
4)当存储过程和函数被执行的时候,SQL Manager会到procedure cache中去取相应的查询语句,如果在procedure cache里没有相应的查询语句,SQL Manager就会对存储过程和函数进行编译。
(1)DELETE语句执行删除的过程是每次从表中删除一行,并且同时将该行的删除操作作为事务记录在日志中保存以便进行进行回滚操作。TRUNCATE TABLE 则一次性地从表中删除所有的数据并不把单独的删除操作记录记入日志保存,删除行是不能恢复的。并且在删除的过程中不会激活与表有关的删除触发器。执行速度快。
(2)表和索引所占空间。当表被TRUNCATE 后,这个表和索引所占用的空间会恢复到初始大小,而DELETE操作不会减少表或索引所占用的空间。drop语句将表所占用的空间全释放掉。
(3)一般而言,drop > truncate > delete
(4)应用范围。TRUNCATE 只能对TABLE;DELETE可以是table和view
(5)TRUNCATE和DELETE只删除数据,而DROP则删除整个表(结构和数据)。
(6)truncate与不带where的delete :只删除数据,而不删除表的结构(定义)drop语句将删除表的结构被依赖的约束(constrain),触发器(trigger)索引(index);依赖于该表的存储过程/函数将被保留,但其状态会变为:invalid。
(7)delete语句为DML(data maintain Language),这个操作会被放到 rollback segment中,事务提交后才生效。如果有相应的 tigger,执行的时候将被触发。
(8)truncate、drop是DLL(data define language),操作立即生效,原数据不放到 rollback segment中,不能回滚
(9)在没有备份情况下,谨慎使用 drop 与 truncate。要删除部分数据行采用delete且注意结合where来约束影响范围。回滚段要足够大。要删除表用drop;若想保留表而将表中数据删除,如果于事务无关,用truncate即可实现。如果和事务有关,或老师想触发trigger,还是用delete。
(10)Truncate table 表名 速度快,而且效率高,因为:
truncate table 在功能上与不带 WHERE 子句的 DELETE 语句相同:二者均删除表中的全部行。但 TRUNCATE TABLE 比 DELETE 速度快,且使用的系统和事务日志资源少。DELETE 语句每次删除一行,并在事务日志中为所删除的每行记录一项。TRUNCATE TABLE 通过释放存储表数据所用的数据页来删除数据,并且只在事务日志中记录页的释放。
(11)TRUNCATE TABLE 删除表中的所有行,但表结构及其列、约束、索引等保持不变。新行标识所用的计数值重置为该列的种子。如果想保留标识计数值,请改用 DELETE。如果要删除表定义及其数据,请使用 DROP TABLE 语句。
(12)对于由 FOREIGN KEY 约束引用的表,不能使用 TRUNCATE TABLE,而应使用不带 WHERE 子句的 DELETE 语句。由于 TRUNCATE TABLE 不记录在日志中,所以它不能激活触发器。
InnoDB和MyISAM是许多人在使用MySQL时最常用的两个表类型,这两个表类型各有优劣,视具体应用而定。基本的差别为:
1)MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持。
2)MyISAM类型的表强调的是性能,其执行数度比InnoDB类型更快,但是不提供事务支持,而InnoDB提供事务支持以及外部键等高级数据库功能。
3)MyISAM的索引和数据是分开的,并且索引是有压缩的,内存使用率就对应提高了不少。能加载更多索引,而Innodb是索引和数据是紧密捆绑的,没有使用压缩从而会造成Innodb比MyISAM体积庞大不小。
4)InnoDB不支持FULLTEXT类型的索引。
5)InnoDB 中不保存表的具体行数,也就是说,执行select count(*) from table时,InnoDB要扫描一遍整个表来计算有多少行,但是MyISAM只要简单的读出保存好的行数即可。注意的是,当count(*)语句包含 where条件时,两种表的操作是一样的。
6)对于AUTO_INCREMENT类型的字段,InnoDB中必须包含只有该字段的索引,但是在MyISAM表中,可以和其他字段一起建立联合索引。
7)DELETE FROM table时,InnoDB不会重新建立表,而是一行一行的删除。
1.索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。
索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。(换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。
2.为了达到降低磁盘I/O的目的
磁盘按需读取,要求每次都会预读的长度一般为页的整数倍, 数据库系统将一个节点的大小设为等于一个页,这样每个节点的元素数据只需要一次I/O就可以完全载入.每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O
3.把B-tree中的m值设的非常大,就会让树的高度降低,有利于一次完全载入
1.数据库事务的隔离级别有4种,由低到高分别为Read uncommitted 、Read committed 、Repeatable read 、Serializable 。而且, 在事务的并发操作中可能会出现脏读,不可重复读,幻读。下面通过事例一一阐述它们的概念与联系。
2.Read uncommitted
读未提交,顾名思义,就是一个事务可以读取另一个未提交事务的数据。
事例:老板要给程序员发工资,程序员的工资是3.6万/月。但是发工资时老板不小心按错了数字,按成3.9万/月,该钱已经打到程序员的户口,但是事务还没有提交,就在这时,程序员去查看自己这个月的工资,发现比往常多了3千元,以为涨工资了非常高兴。但是老板及时发现了不对,马上回滚差点就提交了的事务,将数字改成3.6万再提交。
分析:实际程序员这个月的工资还是3.6万,但是程序员看到的是3.9万。他看到的是老板还没提交事务时的数据。这就是脏读。
实现原理:读数据时候不加锁,写数据时候加行级别的共享锁,提交时释放锁。行级别的共享锁,不会对读产生影响,但是可以防止两个同时的写操作。
那怎么解决脏读呢?Read committed!读提交,能解决脏读问题。
3.Read committed
读提交,顾名思义,就是一个事务要等另一个事务提交后才能读取数据。
事例:程序员拿着信用卡去享受生活(卡里当然是只有3.6万),当他埋单时(程序员事务开启),收费系统事先检测到他的卡里有3.6万,就在这个时候!!程序员的妻子要把钱全部转出充当家用,并提交。当收费系统准备扣款时,再检测卡里的金额,发现已经没钱了(第二次检测金额当然要等待妻子转出金额事务提交完)。程序员就会很郁闷,明明卡里是有钱的…
分析:这就是读提交,若有事务对数据进行更新(UPDATE)操作时,读操作事务要等待这个更新操作事务提交后才能读取数据,可以解决脏读问题。但在这个事例中,出现了一个事务范围内两个相同的查询却返回了不同数据,这就是不可重复读。
实现原理:事务读取数据(读到数据的时候)加行级共享锁,读完释放;事务写数据时候(写操作发生的瞬间)加行级独占锁,事务结束释放。由于事务写操作加上独占锁,因此事务写操作时,读操作也不能进行,因此,不能读到事务的未提交数据,避免了脏读的问题。但是由于,读操作的锁加在读上面,而不是加在事务之上,所以,在同一事务的两次读操作之间可以插入其他事务的写操作,所以可能发生不可重复读的问题。
那怎么解决可能的不可重复读问题?Repeatable read !
4.Repeatable read
重复读,就是在开始读取数据(事务开启)时,不再允许修改操作
事例:程序员拿着信用卡去享受生活(卡里当然是只有3.6万),当他埋单时(事务开启,不允许其他事务的UPDATE修改操作),收费系统事先检测到他的卡里有3.6万。这个时候他的妻子不能转出金额了。接下来收费系统就可以扣款了。
分析:重复读可以解决不可重复读问题。写到这里,应该明白的一点就是,不可重复读对应的是修改,即UPDATE操作。但是可能还会有幻读问题。因为幻读问题对应的是插入INSERT操作,而不是UPDATE操作。
什么时候会出现幻读?
事例:程序员某一天去消费,花了2千元,然后他的妻子去查看他今天的消费记录(全表扫描FTS,妻子事务开启),看到确实是花了2千元,就在这个时候,程序员花了1万买了一部电脑,即新增INSERT了一条消费记录,并提交。当妻子打印程序员的消费记录清单时(妻子事务提交),发现花了1.2万元,似乎出现了幻觉,这就是幻读。
实现原理:事务读取数据在读操作开始的瞬间就加上行级共享锁,而且在事务结束的时候才释放。分析方法和读提交数据类似,本处不再赘述。但是,由于加锁只是加在行上,所以,仍然可能发生虚读的问题。
那怎么解决幻读问题?Serializable!
5.Serializable 序列化
Serializable 是最高的事务隔离级别,在该级别下,事务串行化顺序执行,可以避免脏读、不可重复读与幻读。但是这种事务隔离级别效率低下,比较耗数据库性能,一般不使用。
实现原理: 在读操作时,加表级共享锁,事务结束时释放;写操作时候,加表级独占锁,事务结束时释放。
值得一提的是:大多数数据库默认的事务隔离级别是Read committed,比如Sql Server , Oracle。MySQL的默认隔离级别是Repeatable read。
创建索引情况:
1.在经常需要搜索的列上,可以加快搜索的速度;
2.在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;
3.在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;
4.在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;
5.在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
不应该创建索引的情况:
1.对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。
2.对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。
3.对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少,不利于使用索引。
4.当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改操作远远多于检索操作时,不应该创建索引。
第一范式: 数据库表的每一列都是不可分割的原子数据项.
第二范式: 数据库表中的每个实例或记录必须可以被唯一地区分.
第三范式: 一个关系中不包含已在其它关系已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。
1) 左连接 left join
左边表格的所有行都显示,右表中不存在的为NULL
select a.*,b.* from a left join b on a.id=b.parent_id
2)右连接 right join
右边表格的所有行都显示,右表中不存在的为NULL
select a.*,b.* from a right join b on a.id=b.parent_id
3) 内连接 inner join
左边和右边表中都存在的才显示
select a.*,b.* from a inner join b on a.id=b.parent_id
* 什么是主从复制
主从复制,是用来建立一个和主数据库完全一样的数据库环境,称为从数据库;
* 主从复制的原理:
1.数据库有个bin-log二进制文件,记录了所有的sql语句。
2.只需要把主数据库的bin-log文件中的sql语句复制。
3.让其从数据的relay-log重做日志文件中在执行一次这些sql语句即可。
* 主从复制的作用
1.做数据的热备份,作为后备数据库,主数据库服务器故障后,可切换到从数据库继续工作,避免数据丢失。
2.架构的扩展。业务量越来越大,I/O访问频率过高,单机无法满足,此时做多库的存储,降低磁盘I/O访问频率,提高单机的I/O性能
3.主从复制是读写分离的基础,使数据库能制成更大 的并发。例如子报表中,由于部署报表的sql语句十分慢,导致锁表,影响前台的服务。如果前台服务使用master,报表使用slave,那么报表sql将不会造成前台所,保证了前台的访问速度。
* 主从复制的几种方式:
1.同步复制:所谓的同步复制,意思是master的变化,必须等待slave-1,slave-2,...,slave-n完成后才能返回。
2.异步复制:如同AJAX请求一样。master只需要完成自己的数据库操作即可。至于slaves是否收到二进制日志,是否完成操作,不用关心。MYSQL的默认设置。
3.半同步复制:master只保证slaves中的一个操作成功,就返回,其他slave不管。
这个功能,是由google为MYSQL引入的。
* 关于读写分离
在完成主从复制时,由于slave是需要同步master的。所以对于insert/delete/update这些更新数据库的操作,应该在master中完成。而select的查询操作,则落下到slave中。
https://blog.csdn.net/SnailMann/article/details/94724197